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Abstract—This paper presents a unified method of structural dynamic analysis that is readily applicable to the
nonstationary random response analysis of stable linear trusses and frames of two or three dimensional configura-
tion. The method is general enough to treat the structure either as a continuous (distributed) mass system or as a
discrete (lumped) mass system, with any form of linear viscous damping. Forcing functions, random in time and/or
in space, can be applied anywhere when a frame is considered. However, when a truss is considered, the forces are
applied only at the joints.

In evaluating the frequency response function matrix or the impulse response function matrix, the linear
graph theory and the transfer matrix technique are employed throughout the formulation so that the configuration
of structures are taken into consideration in a most general fashion, permitting a convenient use of a high speed
digital computer for numerical computation. The present formulation includes the static structural analysis as a
special case.

A number of numerical examples are worked out and the dynamic characteristics of continuous mass systems
are compared with those of corresponding discrete mass systems.

1. INTRODUCTION

IN RECENT years, considerable effort has been made in the general area of random vibration
as to how the load to mechanical and civil engineering structures can be described as a
stochastic process, and how the random load thus idealized as a stochastic process is related
to the structural response. Typical examples are the studies of dynamic response charac-
teristics of suspension bridges and buildings subjected to the load such as a gusty wind or
an carthquake acceleration.

In these studies, the mean value and the covariance (or correlation) function are two
quantities of vital importance in the statistical representation of the excitation and the
response process, although they do not necessarily describe the random process completely.
In particular, these two functions of the response process play an essential role in the
safety analysis of structures subjected to random loading, in éstimating fatigue life, in
evaluating the probability of catastrophic failure, etc. [1-4]. Furthermore, if the process is
Gaussian, these two functions determine the probability density function of any order.
Therefore, how to evaluate the mean value and the covariance function of the response
process of a general linear structure with the knowledge of the mean value and the co-
variance function of the excitation process or the equivalent, is the major concern of the
present study.
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It 1s assumed that the random processes considered in the present paper possess the
properties of continuity, differentiability and integrability at least in the sense of mean
square {2, 4].

Let the response at point j of the structure be denoted by Y{t)(j = 1,2,...,m) and the
random excitation at point & denoted by Pltik = 1.2,..., n). Let hy{t) be the impulse
response function at point j due to the impulse o(t) applied at point k. Define the frequency
response function H u(w) so that the response at point j to the input et at point k is
H jiw) ¢, where i denotes the imaginary unit. Then, the excitation response relationship
is given by

Y(t) = f h(t —1)P(t) dt (1)

where the excitation P(t) and the response Y{t} are column vectors with P,{t) as the kth
element and Y{t) as the jth element, respectively. The impulse response function and the
frequency response function are related through the Fourier transform pair;

H(w) = f ht)e™ ' dt (2)

1 > .
h(t) = —f H{w)e™ dw 3)
2nJ.

where the frequency response function matrix H(w) is a m x n matrix with H ,(w) as the
Jj—k element and the impulse response function matrix h{t) is a m x n matrix with hyft) as
the j—k element.

It can be shown from equations (1) to (3) that the mean value function my(r) of the re-
sponse is

mylt) = E[Y(t)] = j | h(t — T)mp(t) dt (4)
or
1 r H(w)imp(w) e dw 3
2n)_,.
where E denotes the expectation and
mp(t) = E[P (1)] (6)
mp(t) = E[Jﬂ P(t)e"""'dr] {7)

Let Kyy(t,,t,) denote the covariance function matrix with the covariance function
Ky v, (t;,t:) of Y{t,) and Y;(z,) as the j-j’ element (j,j' = 1,2,...,m);

Kyy(ty. ty) = E[{Y(t)—my(t )} { Y(t,)—mylt,)}] (8)

where the prime denotes the transpose of a matrix. Then, it can be shown that

Kyylty, 1) = f f Wty — 1 ) Kpp(t(, 100, — 1) dT d1, 9)
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or
Kyylt,ty) = 4%:2_[:: Jf: Syr(wy, wy) et o2 4y dw, (10)
with
Kpplty, ) = E[{P(t))—mp(t,)} {P(t2) —mp(t,)}] (11)
Syylwy, wy) = H(w)Spplwry, w7)H* (w,) (12)
and
Spplw,, w,) = f: J:) Kpplty,t,) e ntrmead dp g, (13)

The mean value and the covariance function of the response can be evaluated either
in the time domain using equations (4) and (9) in which case the impulse response function
matrix h(t) of the structure, the mean value function vector mp(t) and the covariance function
matrix Kpp(t,,t,) of the excitation must be known, or in the frequency domain with the
aid of equations (5) and (10) where the knowledge of the frequency response function
matrix H(w), the Fourier transformed mean value function vector my(w) and the genera-
lized spectral density matrix Spp(w,, w,) of the excitation are required.

Since statistical characteristics of the excitation process is assumed to be known in
terms of the mean value and covariance function or in terms of their Fourier transforms,
it only remains to determine the impulse response function matrix and the frequency
response function matrix of the structure in order that the formulation given in equations
{1)~(13) can be used for the mean value and the covariance function of the response. The
emphasis in the present study, therefore, mainly placed on the techniques of estimating the
impulse response function matrix and the frequency response function matrix.

2. PRELIMINARIES
(1) Structures considered

Consider a stable frame or truss of arbitrary configuration consisting of straight
members and supports with no release. Choose the points of support and of intersection of
members as nodes. The nodes are identified either by upper case letters in alphabetical
order or by positive integers 1,2,..., N with the nodes at supports (datum nodes) last,
where N is the total number of nodes. Number and orient individual members (branches)
arbitrarily. Thus a frame or truss is associated with an oriented linear graph. In Fig. 1, an
oriented linear graph is drawn for a frame structure.

It is assumed that the cross-section of each member is uniform for trusses whereas it
can be piecewise uniform for frames in which case nodes are created at the points of uni-
formity change in addition to those at the points of intersections.

(2) Branch—node and node—node incidence matrix

Consider branch j that is oriented from node A (the initial node) to node B (the final
node). Node A(B) is said to be positively (negatively) incident on branch j and branch j is



1008 M. SHiNOZUKA and J. N. YANG

Fi1G. 1. A frame structure and its associated linear graph.

said to be positively (negatively) incident on node A(B). The initial (final) node of a branch
is said to be positively (negatively) incident on the final (initial) node of that branch.

To specify the connectivity of a linear graph, the augmented branch-node incidence
matrix A* 5, 6] is employed. The rows of A* correspond to the branches and the columns
to the nodes, and its j—J element, a,, is equal to +1, —1 or 0 depending on whether branch
j is positively, negatively or not incident on node J. Clearly, the matrix 4* contains all the
information of connectivity and orientation of a linear graph.

The matrix A* with the datum columns (the columns associated with the datum nodes)
removed is referred to as the branch-node incidence matrix A.

The node—node incidence matrix E is defined among the non-datum nodes in such a
way that its I-J element, e, is equal to +1, —1 or 0 depending on whether node J is
positively, negatively, or not incident on node I with the provision that ¢;; = 0 if I = J.
Evidently, the matrix E is derivable from the matrix A.

(3) Random excitations

When a truss is considered, the source of the random excitation is limited to a set of
concentrated random forces acting at the nodes only. The random displacement and
acceleration excitations at nodes can also be considered. For a frame, however, the concen-
trated random forces (including those in the form of couples) as well as the random displace-
ment and acceleration excitations can be applied at any point of the structure. When these
excitations are applied to the frame at those points other than the intersections of the
members, additional nodes have to be created at the points of application of such excita-
tions. Also wherever the lumped masses are attached to the structure other than at the
intersection of the members, additional nodes have to be created at these points. The
distributed random excitation should be approximated by the concentrated random
excitation [2, p. 175].

(4) Coordinate systems

Let a global coordinate system fixed in space be denoted by the rectangular right-
hand axes (&, #, {) with an arbitrary orientation. Associated with each branch, say branch j,
construct a local rectangular right-hand coordinate system (x;, y;, z;). This system is fixed
with respect to the global coordinate system such that, in the undeformed state, x; coincides
with the axis of the member (branch) while y; and z; coincide with two principal axes of the
initial cross section of the branch. Let A; be the (orthogonal) transformation matrix
between the coordinate systems (x;, y;, z;) and (£, 1, {).

(5) Branch and node quantities

Unless otherwise stated, branch quantities (branch forces and branch displacements)
have a superscript G if their components are with respect to the global coordinate system,
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whereas the nodal quantities are always referred to the global coordinate system without
superscript.

Let the resultant forces and moments acting on initial end I and final end F of branch j
of a frame (the end branch forces) be represented by (6 x 1) vectors with components in
the local coordinate system,

1'1} = [1Tj1 17}2 17}3 1Tj4 17}5 1Tj6]'
FT} = [FT}I F7}2 FT]'3VFT}4 FT}S FT}G]I

in which ;T;,, ;T;, and ; T}, are, respectively, the x}‘, y;and z; components of the force acting
on the initial end of the branch whereas ;T}4, ;T;s and ;T are, respectively, the x;, y;, and
z; components of the couple on the initial end. Similar definitions apply to ¢ Ty(k = 1,...6)
at the final end.

Similarly, the local components of the displacements (including rotations) at the initial
and the final end are the end branch displacements ;U; and zU; where

IUj = [IUjl IUj2 IUj3 IUj4 IUjS IUj6]/
FUj = [FUjl FUjZ FUj3 FUj4 FUjS FUj6]/
These quantities can be expressed in the global coordinate system by the following
transformation
T§ =R T, pUS = R} 5U;

in which

Moreover, let T, and U; denote the branch forces and branch displacements, respectively,
at any cross section of branch j, ie. T(x; = 0) = ;T;, T(x; = l}) = (T, etc. where [; is
the length of the member (branch j).

Because of the assumption of no release, the displacements of the end cross-sections
of those members that meet at a common node are identical. For example, if node J is the
initial node of the branch j and is the final node of the branch k, then

IUj‘; = U f
Hence, the nodal displacement at node J is defined by
JU = IUJG = FUg‘

Furthermore, introduce a (6 x 1) vector ,P referred to as the nodal force at node J whose
elements are the global components of the external force applied at node J

JP=[.IPIJP2.IP3.IP4JP51P6]/

in which ,P;, ;P, and ,P; are, respectively, the ¢, # and { components of the applied force
and ,P,, ;Ps and ;P are, respectively, the &, # and { components of the applied couple.
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A (6B x 1) vector T and (6N x 1) vectors U and P are then defined as follows:
T=[LTT,..,T,... T
U=[LU,U...,U....UY
P=[P,P.. ;P...\PY

where B is the total number of branches and N is the total number of non-datum nodes in
the structure.

The quantities defined above can be employed for truss problems if the last three
components of , T, (T}, ,U;, pU;, ;U and ;P are dropped so that now these are all (3 x 1)
vectors, since they are either identically zero or will be eliminated from the formulation.
Also, R; is to be replaced by A; for the coordinate transformation.

(6) Sign convention

The standard right-hand rule is adopted as sign convention for the quantities discussed
above. Hence, the components of the displacement and of the nodal force are positive if
they are in the same direction as the corresponding reference coordinates (local or global).
The components of the resultant force (concentrated force and couple), acting on a cross-
section of branch j with positive outward normal in reference to the direction of x;-axis,
are positive if they are in the same direction as the corresponding local coordinates, while
the components of the resultant force on a cross-section with negative outward normal,
are positive if they are in the negative direction of the corresponding local coordinates.
This convention is illustrated in Fig. 2 for ; T;.

(7) Steady state vibration

To determine the frequency response function matrix, the steady state vibration of the
quantities described in the preceding discussion are considered in the complex form with

Y
1 X ‘ F

z; /
‘ (a)

T
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+ T -
Itﬁ\l) + T 2 1lis

(b) (c)

F1G. 2. (a) Local coordinate of branch i. (b) Cross-section at initial end with positive outward normal.
(c) Cross-section at initial end with negative outward normal.
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corresponding lower case letters indicating the complex amplitude ;

it

_ iot !
(= e = [T T2 1Tje) €

) o (14a)
Ti(x) = tx) e = [1;1(x)T;5(x) . .. Tj6(x)] €

etc.

T=1e" = [;1,,1,...15] €

U=ue" =[juu...ule“ (14b)

P=pe“=[pp...\p]e

3. FREQUENCY RESPONSE MATRIX

(1) Frames

{(a) Branch vibration. Consider the vibration of branch j with the following notations ;
A; = cross sectional area, E; = Young’s modulus, ¢;; = c;, = ¢;; = retardation time of
normal stress—strain relation, m; = mass per unit length, c,, ;c,, jc; and jc, = coefficients
of linear viscous (external) damping associated, respectively, with the extensional vibration,
flexural vibrations in the x;—y; plane and in the x;—z; plane and torsional vibration,
I;, and I;, = moments of inertia of the cross section about z; and y; axes, G; = shear
modulus, J; = Saint Venant constant of uniform torsion, r; = radius of gyration and
[; = length.

First, consider the flexural vibration in x;—y; plane. The equation of motion and the
relation between the branch force and the branch displacement can be written as

4
J
0T,
T,=—-—12° (16)
! 0x;
2 .
J

where dots indicate the differentiation with respect to time.
The steady state solution to equation (15) in the form of equation (14), is obtained as
ujr(x;) = Ay sin(Ax;/1) + A4, cos(4,x,/1) (18)
+Aj; sinh(4;,x;/1;) + A, cosh(4;,x,/1))
where
A = (mw?* —iw )5 /E;1L(1 +ioc;,) (19)

and 4, A,, A; and A, are to be determined from the following boundary conditions.

Hj = u;,(0) (20)
Uje = u;-z(O) (21)
FlUjz = “jz(lj) (22)

FlUje = “}z(lj) (23)
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1Tiz = Tp(0) = — E (1 +ioe;,)ujy(0) (24)
1Tie = Tel0) = Ed (1 +iwe;uf(0) {25)
w2 = Tl = — EL(1 +ioc () (26)
Flio = Toll) = E;LL(1 Ficwe; iy (1) (27)

where primes denote the differentiation with respect to x;. Hence, if the solution in equation
(18) satisfying equations (20), (21), (24) and {25) as boundary conditions, is substituted
into the last two equations, then, the transfer equation is obtained as

Flj2 ,fl 1 ;f1 2 12 jfl 1 j.fl 2 142
- +| (28)*
Flie ifar S 1Tje ifar if22 Mje
Furthermore, if the solution in equation (18) that satisfies equations (20) to (23) as boundary

conditions, is employed in equations (24) and (25), then the end branch force—displacement

equation is obtained as
M2

T2 K;; 0 jbll jblz jb13 jb14 u
- Uje
1Tje 0 Kjo| [ b2 b2z b2s jbaa u 29"
F¥ji2
s
The formulation can be made to include the effect of a constant axial force, for example,
due to a static loading, on the flexural vibration with a slight modification [7].
In a similar fashion, the transfer equations and the end branch force-displacement
equations for the extensional vibration [equations (30a) and (31a)] the flexural vibration

in the x~z; plane [equations (30b) and (31b)] and the torsional vibration [equations
{(30c) and (31¢)] are obtained as follows:

. sin / N
FTj1 = 4Tj; €08 Ay —(mw? —iw j0q)—— : L1 ujy (30a)
1
Flj3 &1t 812 1T53 &1 82 3
= + (30b)*
FTjs 21 822 1tjs 821 822 s
sin 4;
— 3 2.2 , j4 *
Flja = jTjg COS Ajy —(myriw* —iow jc4)—~~i——~lj m (30c)
i
= K ~(ptys = sty €05 43 (3lay*
1= Ry i — e i S
Itj1 Jt smx ] J J
~ _ _ _ M3
1753 Kj3 0 jbll jblz _ib13 jb14 s
- (31b)*
_ N N FUj3
T; 0 Kjs bor bas jbas jhaa
[Ad ] 7 J 4 J El Fujs
,3
3 5
frjél == K 51n /1 (Fuj4 1“}4 COs ,x,jA) (31C)

* In what follows, the definitions of undefined quantities and symbols in the equations with an asterisk are
given in Appendix I.
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In the present formulation, the effect of warping on the torsional vibration is neglected,
although it can be taken into account with a slight modification [7].

The transfer equations given in equations (28) and (30) and the end branch force-
displacement relations given in equations (29) and (31) can be written in the following
matrix form;

#t; = B;;1; +D;R; uf (32)*
175 = K{FR; jui +WR; puf) (33)*
where the rotational transformations
;= R; uf, ¢ = R} u;
has been used and

K,=[Ky] k=12,...6 (34)

When the jth member is massless, i.e. m; = 0 and therefore 1; = 0 assuming ¢, = 0
(k = 1,2,3,4), one can reduce the transcendental elements of B;, D;, F; and W, into con-
stants by taking the limit as A, (k = 1,2, 3, 4) approach zero. The resulting matrices B;,
D;, F; and W, thus contain no transcendental elements and are not functions of w (see
Appendix for explicit expression of B;, D;, F; and W).

In the preceding formulation, the complex damping can be introduced if iwc;(k = 1,
... 4) are replaced by io;(a; = constant). Also, it should be pointed out that any form of
linear viscous damping arising from linear viscoelastic stress—strain relations can be
considered by replacing E(1 +iwcy) etc. by iwG (w), where G (w) are the Fourier trans-
forms of the appropriate relaxation moduli.

(b) Nodal vibrations. The equation of motion at a non-datum node, say at node J,
can be written as

SUTS+ Y pT¢+,P = M ,U +,¢,U (35)
j k

with the index j refers to those branches positively incident on J while k to those negatively
incident on J and

,M=[,M,], 1=1,2,...6 (36)

Jé=[.lél]9 l=1,2,...6 (37)

where ;M| = ;M, = ;M; indicate the mass at node J and ;M,, ;M and ;M. are the
moment of inertia of that mass about the axis passing through its centroid and parallel to
the &, n and { axes respectively, while ,¢,, ,¢, and ;&5 (possibly o, = ,¢, = ,¢3) are coeffi-
cients of linear viscous damping associated with translation of node J in the & n and {
directions and ,¢,, ;Cs and ;¢ (possibly ;¢, = ;&5 = ;C¢) are coefficients of linear viscous
damping associated with rotation of the node about the axes passing through the centroid
of the mass and parallel to the £, n and { axes.
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For the steady state solution of the form equation (14), equation (35) yields

Y rd Y gt tp = (—0? ;M +io ,0) u (38)
j k
which, with the aid of equation (32), can be written as,
P +yZ ju _Zk: RiDyR; qu = _zi R;‘ I +Zk, RiB, ;i (39)*
with |
Z = [,M,wz—iw,E,], I=1,2,3,...6. (40)

(c) System vibrations. Define system matrices K, Z, 0, Q and Y, each element of which is
a matrix of the individual branch quantities or of the individual nodal quantities.

I
K=|K;i, j=12...B (41)
L N
-
Z=\,Z|, J=12,...N (42)
- N
N
0=1\4u1 (j=12,...B;J=12,...N) (43)
with
0 ifa; =0
gi; =y FiR; fa;;= +1 (44)*
WR; ifa;= —1
0 =1[q;] (j=12,...B;J=1,2,...N) (45)
with
0 lfaj_]:()
qiy =4 —R; ifa;= +1 (46)*

where aj, is the j-J element of branch-node incidence matrix. B is the total number of
branches and N the total number of non-datum nodes. The matrices Q and Q are called
the modified branch-node incidence matrices.

Y=[yy] (({J=L2..N) (47)
with

—RiD\R, ifer; = 1 and k denotes the branch connecting nodes I and J.
Yy = . (48)*
0 Otherwise

where e, is the I-J element of the node-node incidence matrix.
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With the aid of these system matrices, the branch force—nodal displacement relationship
of the system

T = KQu (49)

is derived from equation (33) and the equations of motion at non-datum nodes

pHZ +Ym = Qt (50)

are derived, from equation (39).
Hence, it follows from equations (49) and (50) that

u=[QKO—(Z+Y))"'p (51)
©=KQ[Q'KQ—(Z+Y)] 'p. (52)

(d) Releases. The preceding discussion is based upon the assumption that no release
exists within the frame. When, however, the release occurs at a support node (in the form
of a hinge, a roller or an elastic constraint), or at an interior node, a slight modification of
the end branch force—displacement equation [equation (33)] can easily be made [7] whereas
the transfer equation [equation (32)] remains the same.

(e) Excitation at supports. Consider the case where excitations are applied at supports,
in the form of random displacement or acceleration, instead of at non-datum nodes. In
such a case, the supports which are excited are regarded as non-datum nodes, although
they are still designated by upper case letters after the non-support nodes in alphabetical
order.

Then, the matrices u, 0, @ and Y can be partitioned as follows.

u= [uh} E “é],’ Q = [QN :' Qe]a Q = [QNE Qe] (53)

Yo! Y, Zyt 0
Y=|-2-r—- Z=]|--—"—-- (54)
YNeI Yee 0 : Ze
where uy, Oy, Qy, Zy and Yy involved only non-excitation nodes while u,, 0,, Q,, Z,, Y.,
Yy, and Y,, excitation nodes.
Using equations (53) and (54) in equations (49) and (50) with equation (50) containing
only the equations of motion for non-excitation nodes, one can solve uy and 7 in terms of
the excitations at supports u, as follows.

uy = [QNKOn—(Zy + YY1 '[Y.— QKO Ju, (55)
T = KQN[Q;VKQN—(ZN +Yu)l~ I[YL_Q;\'KQe]“e +KQ.u, (56)

where u, is to be replaced by —a_/w? if the excitation is in the form of acceleration.

The modification for the case where excitations, in the form of displacement or accelera-
tion, are applied at non-support nodes, can be made in a similar fashion.

(f) Lumped mass systems. If the frame is approximated by a system of masses connected
by the massless members, then 4, = 0 under the assumption that ;c, = 0(j = 1,2,... B;
k = 1,2,3,4). In such a case, it can be shown that equations (49) and (50) reduce to

7= KQu p+Zu =01 57



1016 M. SHINOZUKA and J. N. YANG

where B, is used for B; in equations (45) and (46) and

K’:[KJ] j=12...B (58)*
K; = K,; +ioC,; (59)*
with K,; and C,; being the direct stiffness matrix and damping matrix, respectively, of
branch ]
Hence, it follows from equation (57) that

u=[QKQ-2Z]""p

= _ B (60)
1= KQ[QKQ-Z] 'p

(g) Static analysis. The same pair of equations as in equation (60) are valid for the
static analysis of frames [8, 9] for which w = 0 and Z = 0.

(h) Frequency response function matrix. The frequency response function matrices of the
nodal displacement and the branch force are obtained respectively from equation (51)
and equation (52) by replacing p by a 6N x 6N identity matrix. If, however, lumped mass
approximate systems are used, equation (60) is to be used for this purpose.

When the excitation is given at certain nodes (excitation nodes) in the form of displace-
ment or acceleration, the frequency response function matrices of the nodal displacement
and the branch force are obtained respectively from equation (55) and equation (56) by
replacing u, by the 6N’ x 6N’ identity matrix where N’ is the number of excitation nodes.

(2) Trusses

As pointed out previously, only the first three components of T}, (U;, ;U;, ;P and ;U
are needed for the solution of the truss problem. Although zU; and ,U; actually have six
components, the last three components will be eliminated from the evident condition that
hinges cannot resist couples. This condition also eliminates the torsional vibration from
formulation. The equations of motion and the end branch force—displacement equations
for the other three modes of vibration are the same as those associated with frames.

(a) Branchvibrations. First consider the flexural vibration in the x ~y; plane. The steady-
state solution is given in equation (18), and the boundary conditions remain the same as in
equations (20) to (27) except for equations (21) and (23). These two equations should be

replaced by
uj5(0) = 0 6
uj(ly) =

Then, the transfer equation and the end branch force-displacement relation are obtained
as follows.

Flja = jflsz +jf1“j2 (62)*

1Tj2 = sz(bjl U2 +bj2 Fujz) (63)*
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In a similar procedure, the transfer equation and the end branch force-displacement
equation for the flexural vibration in x;~z; plane can be obtained, while those for the exten-
sional vibration are identical to those associated with frames and are given in equations
(30a) and (31a).

Fljz = €173 H8 iy (64)*
i3 = Kj3(le 43 +Bj2 Fuj3)- (65)*

Hence, the transfer equations, equations (30a), (62) and (64), and the end branch force—
displacement equations, equations (31a), (63) and (65) can be written in the matrix form
as follows.

where B;, D;, K;, F; and W; are all diagonal matrices with diagonal elements as follows

[Bj :COS 4;y, ;f and g (68)
N

[Dj (~mw? +iw jc))l;sin A, /4;,,  ;f and g (69)
X

[Kj Ky, K;; and Kj; (70
a
1

[FJ —j'.]l COS /lll/Sln A‘_}l’ bjl and BJI (71)
N

[Wj Ajfsind;, b, and bj,. (72)
Al

(b) Nodal vibrations. The equation of motion (for translation only) of node J can be
written in the same form as equation (35).
ZITJG+ZFTE+JP=JMJU+JEJU (73)
k

J

where the index j refers to those branches positively incident on node J whereas k to those
negatively incident on node J and

.IM = [JMj]’ <= [15,‘], j= 1,2,3 (74)

with ;M = ;M, = ;M; being the mass at node J, and ,¢,, ,¢, and ,¢; (possibly,
J€1 = ;¢ = ,C3)being the coeflicients of linear viscous damping associated with the transla-
tion of mass in &, n and { directions.

For the steady state solution of the form equation (14), equation (73) yields, with the aid
of equation (66),

w2 ju— Z ADA, lug = 2 ABy T — z Aj 17 (75)
k k i
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where
7 = [JMjwz—iw ,E,] j=1,23 (76)

(c) System vibrations. Define system matrices K and Z in the same way as in the frame
analysis, that is, in the form of equations (41) and (42). However, the elements of these
matrices are given by equations (70) and (76).

The modified branch-node incidence matrices Q and Q are defined as

Q = [q jJ]
Q=g jJ:I
with

I
o

0 ifay,
qu: FJAJ ifajj_

WA,

and (78)

(I
;=

if a;,

BiA, ifa,=—1

where [a;,] is the branch node incidence matrix.
The modified node-node incidence matrix Y is defined as

Y= [y,] (79)
with
—-AD A, ife;; = 1 and k denotes the branch connecting nodes I and J

= 80
Yu 0 Otherwise 89)

where [e;;] is the node-node incidence matrix.
With the aid of these matrices, the branch force-nodal displacement relationship of
the system

= KQu (81)

follows from equation (67), whereas the equations of motion of non-datum nodes are
obtained from equation (75) as

pHZ+Yu =0t (82)
Hence, it follows from equations (81) and (82) that
u=[QKO~(Z+Y)] 'p
1= KQIQKQ—(Z+Y)]"'p

It should be mentioned that although the same notations, K, Z, @, O and Y are used for
trusses as for frames, their definitions are different.

(83)
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(d) Releases and excitations at supports. Only a slight modification [7] of the preceding
formulation makes it possible to consider a roller support. Also, if the excitation is applied
at the supports, the formulation has to be modified in the same way as discussed in Section
3(1)(e).

(€) Lumped mass systems. If the dynamic behavior of a truss is approximated by that of
a system of masses arranged at non-datum nodes, the analysis is considerably simplified
since in this case, only the axial forces exist in the massless branches.

Therefore, redefine the branch quality 7; as

T, =0T = yTj1 = Fl; = Flj1 (84)

and the various branch matrices are reduced to

(85)
B,= +1, D;=0
Aj = [cos(x;, &) cos(x;, n) cos (x;, {)]

The two modified branch-node incidence matrices are then identical and the modified
node-node incidence matrix is zero; Q = Q and Y = 0. Therefore, it follows that the equa-
tion of motion and the branch force-nodal displacement relationship can be written from
equations (81) and (82) as

p+tZu=Q't T = KQu (86)

with 7 being a (B x 1) column matrix.

(f) Static analysis. The same pair of equations as in equation (86) are valid for static
analysis of trusses [10] for which z = 0.

(g) Frequency response function matrices. The frequency response function matrices
of the nodal displacement and the branch force are obtained from equation (83) (from
equation (86) if lumped mass approximation is used) by replacing p by the 3N x 3N identity
matrix.

4. IMPULSE RESPONSE FUNCTION MATRICES

The impulse response function for a complex, distributed mass structure can be
evaluated numerically either by the numerical Fourier inversion from the frequency
response function obtained previously [equation (3)] or by the Laplace transform technique,
while the impulse response function of a lumped mass structure can be evaluated by finding
the eigen values and eigen vectors of a certain pertinent matrix [11].

(1) Lumped mass systems
For the steady state solution obtained previously, the equations relating t;, u;, ;p, ju
etc. are nothing but the Fourier transform of the corresponding equations relating T;, U,
JP, ;U etc.
It can be shown that the Fourier inversion of equations (57) (the frame problem) are
T = K,QU +C,QU (87)

MU+CU+QT=P (88)
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K, = [K,,jj, C, = [C,)j], j=1,2,...B (89)
C = [,c'], M= [,MJ, J=1,2,...N (90)

with K, ;, C,;, ,¢and ;M being given in equations (59), (36) and (37), respectively.
It follows from equations (87) and (88) that

MU +(C+QC,QU +Q'K,QU = P (91)

where

By introducing a new variable [11]

X=[U:UY (92)
equations (91) and (92) can be written as
M*l
X +GX = [6—}) (93)
with
M 'C M 'K
=| - (94)
I, + 0

where I is the 6N x 6N identity matrix, C = C +Q'C,Q and K = Q'K,Q.
The impulse response function matrix is then obtained as

1 M‘l
[0: IN]ED(t)E‘[rJ t=0
ht) = 0
(95)
0 t<0

where D(t) = | e~ " | with 4; being the jth eigenvalue of G and E is the modal matrix of G.

Equation (91) and therefore equation (95) are also valid for a lumped mass truss if
appropriate matrices defined in section 3 (2) (¢) are used.

If the excitation is applied at supports in the form of displacement or acceleration parti-
tions of U and Q can be made in the same way as in equations (53) and (54) and the impulse
response function matrix can be obtained in a similar fashion.

(2) Distributed mass systems

(a) Laplace transform of basic equations and their inversions. Let 7 be the Laplace
transform parameter. It can be shown that, under zero initial condition, the solutions T and
U in the y plane can be obtained from the steady-state solutions equations (51), (52) and
(83) if the frequency w appearing in these equations is replaced by —iy. Hence, a method of
numerical Laplace inversion, proposed by Wing [12], which is a modification of that by
Weeks [13] making use of the Cooley—Tukey algorithm [14], can be employed.

(b) Numerical Fourier inversion. It is stated in equation (3) that the impulse response
function is nothing but the Fourier inversion of the corresponding frequency response
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function. A method of the numerical Fourier inversion developed by the present authors [7],
based on complex Fourier series technique and the Cooley-Tukey algorithm [14] is
conveniently used.

The experience indicates that these two approaches require approximately the same
amount of computational work.

5. NUMERICAL EXAMPLES

It is important to recall the fact that the impulse response function of a complex,
distributed mass structure can only be evaluated “‘numerically” either as the Fourier
inversion of the frequency response function or through the Laplace inversion as described
in Section 4 (2) (a).

It is found that when the covariance function as well as the variance function of the
response of such a structure is to be computed, as in the following examples, the frequency
domain analysis is much more practical than the time domain analysis. This is because,
for the time domain analysis, the impulse response function, which can only be estimated
on an extra step involving either Fourier inversion or Laplace inversion as described above,
is required and, moreover the double convolution integral [equation (9)] has to be carried
out whereas, for the frequency domain analysis, it is necessary only to evaluate equation (10)
using the numerical method of double Fourier inversion [7] involving the frequency
response function and the generalized spectral density of the excitation only.

This argument is obviously based on the assumption that the covariance function and
the generalized spectral density of the excitation can be estimated with approximately
equal ease. At the present time, no method exists to estimate, with any degree of confidence,
the covariance function of a nonstationary process on a single sample function (or even
on a few number of sample functions), and no physical significance of practical use is known
for the generalized spectral density. Therefore, usually, one has to be satisfied with the
covariance function and the associated generalized spectral density of a time domain
“model” of the excitation process exhibiting reasonably well a general trend of variance
function observed in the sample function(s) and reproducing a covariance function within
a time interval with an apparent (local) stationarity which is in a reasonable agreement with
covariance values computed from the sample function(s) assuming the ergodicity. Since
it is not difficult to construct such a time domain model with an analytically well-defined
generalized spectral density [15], the assumption that the covariance function and the
generalized spectral density can be estimated with more or less equal ease, seems justified.
In fact, a generalized spectral density derived from such a time domain model is used in the
frequency domain analysis in Example 1.

(1) Example 1

A two-story plane frame is idealized by (i) a distributed mass system (Structure I) as
shown in Fig. 3 and by (ii) a lumped mass shear beam structure (Structure II) as shown in
Fig. 4. The mechanical properties of Structures I and 11 are listed in Tables 1 and 2 respec-
tively. The masses lumped at joint A and B of Structure II are, respectively, equal to the
total mass of the 1st and the 2nd floor. The external damping associated with branch
and nodal vibrations is assumed to be zero. The interior damping associated with the
branch vibrations is considered in the form of linear viscous damping. The frequency
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F1G. 3. Structure I and its graph.

response functions of both Structure I and II to the acceleration excitation e applied at
the foundation of the structures are obtained. The absolute values of the frequency response
functions are plotted in Figs. 5 and 6.

TABLE 1. MECHANICAL PROPERTIES OF STRUCTURE |

Mass per unit Moment of inertia  Retardation time
Branch length (Ib. sec?/in) Area (in’) (in%) (sec)
1 001 1324 2486 0-008
3 001 13-24 2486 0-008
2 0-005 619 1063 0013
4 0-005 619 106-3 0013
5 0-55 247 23643 0-008
6 041833 1823 13268 0013
TABLE 2. MECHANICAL PROPERTIES OF STRUCTURE I1
Moment of Retardation
Node  Lumped mass (lb. sec?/in) Branch  Area (in°) inertia (in*) time (sec)
A 198 1 26-48 4972 0-008
B 150-6 2 12:38 2126 0013

T -1
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Fi1G. 4. Structure II and its graph.
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The impulse response functions of both structures to the acceleration d(t) applied at
the foundation are plotted in Figs. 7 and 8. Both the Laplace transform and the Fourier
inversion techniques are employed for Structure I. Practically no difference in numerical
results is observed between these two techniques employed.

The variance functions of the response of both structures to an artificial earthquake
excitation are plotted in Figs. 9 and 10. The earthquake acceleration is simulated by passing
a nonstationary shot noise through an appropriate filter as discussed in [15]. The frequency
domain analysis [equation (10)] is used for Structure I with the aid of numerical double
Fourier inversion technique developed in [7]), whereas both the time domain analysis
lequation (9)] and the frequency domain analysis [equation (10)] are employed for Structure
I1. In the latter case, itis noted that both analyses yield practically the same numerical result.

It is observed from these figures that the fundamental frequency of Structure I is
lower than that of Structure II and at these fundamental frequencies the relative displace-
ments of .U, and gU, of Structure I are larger than those of Structure I1. This is due to the
shear beam idealization of the building implying that Structure II is more rigid than
Structure I and has therefore a higher resonant frequency and smaller horizontal displace-
ments. The shapes of the frequency response functions of both structures are almost iden-
tical. This is because, in this particular example, the masses of floor systems are large in
comparison with those of columns so that the fundamental mode dominates the dynamic
behavior of both structures when the external excitation is applied at the foundation.
Similar conclusion can be drawn from the observation of impulse response functions.

To get some ideas on the degree of the internal damping, it is noted that the retardation
times assumed in Tables 1 and 2 produce the damping ratio of the order of 5 per cent for the
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FiG. 7. Impulse response function of 2nd floor relative displacement zU; .
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F1G. 8. Impulse response function of Ist floor relative displacement ,U,.

first mode of vibration when the classical modal analysis of the lumped mass system is
considered in approximation.

(2) Example 2

A plane truss is treated as (i) a continuous mass structure (Structure I1I) and as (ii) a
lumped mass structure (Structure V) as shown in Fig. 11. The mechanical properties of
both structures are listed in Tables 3 and 4. The external damping associated with branch
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I
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< |
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w 08— ’
NN |
04— N | B
1 ~
[ - \\\‘
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time (sec)
FIG. 9. Variance function E[,U%(t)] of floor relative displacement ,U (1), J = 4, B.
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FiG. 10. Variance function E[T%(t)/K%] of story shear force T;, and E[Tk(1)/K%] of story bending
moment T;¢, where K;, and K4 are the shear stiffness and bending stiffness of ith column of Structure [.

and nodal vibrations is assumed to be zero. The interior damping associated with branch
vibrations is considered as (i) linear viscous damping and (ii) complex damping. The
retardation time and complex damping coefficient for each member are assumed to be
0-00015 sec and 0-01, respectively, for both structures. The lumped mass at each joint of

TABLE 3. MECHANICAL PROPERTIES OF STRUCTURE 111

Mass per unit Moment of
Branch length (Ib.sec?/in?) Area (in®)  inertia (in*)

1 0-025 300 3000
2 0-025 30-0 3000
3 0-025 300 3000
4 0-025 300 3000
5 00151 20:0 2500
6 00825 300 3000
7 0-0825 300 300-0

TABLE 4. MECHANICAL PROPERTIES OF STRUCTURE [V

Lumped mass

Node (Ib. sec?/in) Note: the area and the
moment of inertia of each
A 5-637 branch are given in Table 3.
B 5-637 The mass per unit length
C 23-625 of each branch is zero.
D 118125
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Structure 1V is equal to one half of the sum of the masses of all the members that are
connected to the corresponding joint in Structure II1. The frequency response functions of
both structures to a concentrated force ¢’ acting at node 3 in the vertical direction are
obtained. The absolute values of the frequency response functions are plotted in Figs.
12 and 13.

F16. 1. (a) Structure 111 and its graph. (b) Structure 1V and its graph.

A considerable difference is observed between the frequency response function of
Structure 111 and that of Structure I'V. This indicates that the idealization of a truss (with-
out a heavy floor system) by a lumped mass system as considered here is not reasonable in
the dynamic analysis, except that the first and the second natural frequencies may be
estimated in approximation from the lumped mass system as suggested in Figs. 12 and 13.

The frequency response functions of the structure with the viscous damping and those
with complex damping are almost identical in the vicinity of w = 667 rad/sec as it should
be. Since the frequency response function with complex damping is obtained from that with
linear viscous damping of the Kelvin type by replacing ic o by i, , these response functions
take an identical value at w = a;/c;, in the present example, w = 66:7 rad/sec. For the
frequencies greater than 66-7 rad/sec, the response of the structure with viscous damping is
smaller than that of the structure with the complex damping as can be seen from the
figures. This is because the viscous damping is larger than the complex damping in this
domain of frequency.

It is noted that, in this example, the roller support is considered as non-datum node by
adding a massless fictitious branch 8, with a very large extensional stiffness and zero
damping (interior and exterior) so that the formulation can be applied without the modifi-
cation mentioned in Section 3(2)(d).

As in Example 1, if the classical modal analysis is considered for the lumped mass
system in approximation for the purpose of assessing the internal damping associated with
the retardation time of 0-00015 sec in more familiar terms, it produces a damping ratio
in the neighborhood of 1-5 per cent for the first mode.
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F1G. 12. Frequency response function of vertical displacement at joint C (viscous damping). |H(0)|
= 091046 x 10~ 3in.

6. CONCLUSION

Systematical methods are presented for the determination of the frequency and the
impulse response functions of linear structures that are considered either as lumped mass
systems or as distributed mass systems. Network concept and transfer function technique
are employed throughout the formulation so that the geometric configuration of the
structures can be taken into account in a general fashion. This permits a convenient use
of a digital computer for the numerical work involved in the analysis. It is shown that the
general formulation of the dynamic problem is degenerated into that of static analysis when
the frequency of excitation is set to be zero.

Use of a numerical method of the single and the double inversion of the Fourier trans-
form using complex Fourier series technique is emphasized since this technique makes the
frequency domain analysis of the nonstationary random vibration tractable. The methods
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presented in this study constitute a unified systematic approach for the evaluation of the
statistical quantities such as the mean value function and the cross covariance function of
the response of complex linear structures.
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APPENDIX—QUANTITIES AND SYMBOLS GIVEN IN TEXT

(A) Frames
i ] i Ais . , ]
ITRIY cosh 4;, +cos 4, —l%z(smh Ajy—sin 4;,)
J
_ 1
)
if21 Sz —A—:(sinh Ajz t+sin 4;,) cosh 4;, +cos 4,
L _ L 7 4
—f“ 'f_12q —_sinh Ajp Fsin 4;, . _cosh Ajy —CoOs ijzl;
/ ! 24, ’ 24}, J
= S(mjw? —iw;c,)
- ~ cosh 4, —cos 4; sinh 4;, —sin A;
) ) j2 j2 lz Jj2 1213
JfZl jf22 21122 J 2)32 J
jbll jb12 jb13 jbl4 /132 0 _}32 0 -1
jb21 jb22 jb23 jb24 0 _;“122 0 '1j22
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(B) Trusses
,-f =

€os 4;, sinh 4;, —sin 4;, cosh 4,
sinh 4;, —sin 4;,

7o [cosh/ljz—cos/ljz)2 __sinh 4;, +sin 4
J

j2 2 .
. I lmo?—io ¢
22;,(sinh A, —sin 4,) * 25 /] (Mo —iw jc,)

22 )
Al 4 Aj2
by =2 +——coshd,——2—cos i,
7 2 R
/ 2 7T sin Ay, i

sinh 4;,
b. =;i2'2 L_ A
727 2 [sin 4, sinh 4;,
I;.(1 +iwc;,)
K;, = _J_Ll;_‘
142 — mjwz—'lw_'C2 4
J

E Il +ioc;,)

COS 4;3 sinh 4;3 —sin 4;; cosh 43

g = - - =
’ sinh A3 —sin 4,
, 2 , -
5= (cosh A;3 —cos 4;3) .—smh Aj3 Tsin A L | me? —io )
! 24;3(sinh 4;3 —sin 4;3) ’ 2453 o !
2 .

Y mw* —iw jc3 .,

BT 510 o

E;L(1 +iwc;3) "’

_ A2 A
b, =22 Aj3
i 2 (sx hij; cosh " sin

G ] - S U
727 2 \sinA;z sinh A

E;1,(1 +iwc;;)

i Jy
st - 3
J

cos Aj3)
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AGcrpak—Pabora npeacrasiser 0OObeAMHEHHBI METO] AMHAMHYECKOTO pPacHeTa KOHCTPYKIHIA, KOTOpPbIi
JIETKO MPHUMEHMTh K pacyeTaM AHaJIM3a HEeCTALIMOHAPHOM MPOU3BOJILHON PeaKUMM JIMHEMHBIX YCTOMYMBIX
depm M pam, 00aaarOLIMX IBYX-UIH TPEXMEPHO# koHdurypauueit. Booble MeToa ABIAETCA JOCTATOMHBIM
IS pacCMATPUBAHMA KOHCTPYKLMH TaK B BHIE HENPEPBLIBHOW (paclpenesieHHOi) CUCTEMbl MAacC, Kaxk M
IUCKPETHOM (COCPesOTOYEHHOM) CHCTEMBbI Macc, ¢ Kakoi Hubyab dopmoit Bsizkoro aeMrnduposaHus.
Bcerga MOXHO MCNO/Ib30BaTh (QYHKUMH CWJI, TPOU3BOJIBHBIX BO BPEMEHH M/WAM TMPOCTPAHCTBE, €CJU
paccMmarpuBaercs pama. OIHAKO A/ Cliy4as GepMBbl, CHIIbl YYHTHIBAKOTCS TOJIBKO B y3/ax.

BbiBOAs MATPHLE! (DYHKUWH PEAKLHH YACTOTHI KIIM MaTPHLL! GYHKLUMH PEAKIMH HMITYJIbCa, IPUMEHSAETCA
JMHEHAs Teopus rpadoB U Cocod MPAHCIIOHUPOBAHHOM MaTpHLb NPH Beel hopmynuposke. Kondurypauus
00Cy)IaeMbIX KOHCTPYKUM, TpuHATA Halboee 00LIMM CITOCOO0M, QO3BAJISET HCIONB30BATh /11 YUCIICH-
HbIX PAcYeTOB ObICTPOAESHCTBYIOILYIO LU(GPOBYIO BSIYMCIUTENbHYIO MalunHy. TlpemnoxernHas dopmynu-
POBKa 3aK/IHOYAET, B KAYECTBE CHEUNALHOIO CiIyvasi, CTATHYECKMH METOM pacyera KOHCTPYKUHH.

Pa3pa6GoTaHO HEKOTOPbIE KOJMYECTBO YMCIEHHBIX MpHMepoB. CpaBHUBAIOTCA AMHAMKWYECKHE Xapak-
TEPUCTHKH HEMPEPBIBHBIX CHCTEM MAacC C COOTBETCTBEHHBIMM CHCTEMAaMU JMCKPETHBIX MaccC.



